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Abstract

A two-phase logarithmic law of the wall for isothermal bubbly turbulent boundary layer is developed. Total
boundary layer liquid turbulent stress is estimated by the sum of bubble induced local stress and shear induced
stress. Boussinesq turbulent viscosity approximation is assumed to be valid for both stress components. A

proportionality coe�cient was introduced to account for inherently non-linear interaction between shear and bubble
induced turbulence ®elds. The two-phase wall law was implemented in CFX4.2 computational ¯uid dynamics
program. A better agreement with experimental data was achieved when the new wall law was employed rather than
conventional single-phase law. 7 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

Recently, several two-¯uid models of isothermal,
incompressible, turbulent, bubbly ¯ow were developed
and tested [1±3]. Most of the models employed k±e
closure to model Reynolds stress in the liquid phase.
All models relied on a single-phase logarithmic law of
the wall as a boundary condition. However, single-
phase wall law is not valid for turbulent bubbly

boundary layer as shown in experiments by MarieÂ et
al. [4], Nakoryakov et al. [5,6] and Sato et al. [7]. It
was found, that two-phase boundary layer has the

same structure as its single-phase counterpart as dis-
played in Fig. 1. The measured liquid mean velocity
pro®le in the log layer ( y+ 3 30±200) obeyed the log-

arithmic law:

U��y�� � 1

k 0
ln�y�� � B 0, �1�

where U� � Ul=U
0
w is the normalized streamwise liquid

velocity, subscript l refers to liquid phase, y� � yU 0w=nl

is the normalized distance normal to the wall, U 0w is
the two-phase frictional velocity, nl is the liquid kin-
ematic viscosity. For upward ¯ows, Von Karman �k 0�
and additive (B ') constants in Eq. (1) were found to be
functions of mean void fraction, liquid velocity and
void fraction shape in the log layer. Measured down-
ward liquid velocity obeyed logarithmic law with

single-phase values of B (B 3 5.45) and k �k � 0:419�
[6].
Preservation of viscous sublayer thickness y0� � 11

allowed MarieÂ et al. to obtain an expression for the
constant B ' in terms of k 0 and single-phase values of B
and k:

B 0 � y0�

�
1ÿ k

k 0

�
� k

k 0
B: �2�

The existence of logarithmic law in bubbly boundary
layers allows to assume that (a) similarity hypothesis
holds; (b) there exists a local equilibrium between

liquid turbulent energy production and dissipation.
This fact was exploited by several researchers [7,8] to
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derive two-phase wall law. The total turbulent viscosity
was assumed to be the sum of shear and bubble
induced components. However, the resulting wall laws

were di�erent from logarithmic contrary to experimen-
tal ®ndings. The purpose of present research is to de-
rive two-phase logarithmic wall law consistent with

experimental observations. In derived logarithmic law,
two-phase mixing scales are linear combination of
shear and bubble turbulence mixing scales.

2. Derivation of the two-phase wall law

Let us consider an incompressible, isothermal, two-

phase, turbulent boundary layer with longitudinal
coordinate x and distance from the wall y. The x-com-
ponent of liquid momentum equation can be cast as

[9]:
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where Ul and Vl are the longitudinal and lateral com-
ponents of the mean liquid velocity, hu 2i and huvi are
the Reynolds stress components, Fx and gx are the

interfacial force density and gravity projections, al is
the local liquid void fraction and h�i denotes phasic
ensemble averaging.

Fully developed boundary layer approximation and
turbulence predominance is assumed. Interfacial force
density is neglected as well. Eq. (3) becomes:

@

@y
� ÿ alhuvi� � 0: �4�

Introducing turbulent viscosity nt and integrating
Eq. (4) across the boundary layer yields:

alnt
@Ul

@y
� t 0w

rl

� U
02
w , �5�

where t 0w � �alrlnl�@Ul=@y��jy�0 is the two-phase wall

shear stress. Total turbulent viscosity can be written
as:

nt � nout
t � nin

t , �6�

Nomenclature

B additive constant in the wall law
Cm turbulence constant
Cmb bubble induced turbulence constant

g gravitational acceleration
F interfacial force density
J super®cial velocity

k turbulent kinetic energy
P mean pressure
hu 2i, hv 2i, huvi components of liquid Reynolds

stress
U, V components of mean liquid velocity

vector
Ur local slip velocity

Uw wall friction velocity
x, y coordinate components parallel and

normal to wall

y+
0 viscous sublayer thickness

Greek symbols

a void fraction
b two-phase correction coe�cient
e dissipation rate

k von Karman constant
k1 proportionality coe�cient
s surface tension

n kinematic viscosity
r density
t shear stress

Superscript
x rescaled two-phase wall quantity

Subscript
+ value in wall units
g gas phase

l liquid phase
w wall value

Fig. 1. Schematic of bubbly turbulent boundary layer: solid

line represents upward ¯ow; dotted line represents downward

¯ow.
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where nout
t and nin

t are the turbulent shear and bubble
induced viscosities, respectively. Linear superposition

in Eq. (6) is only valid for boundary layer void frac-
tion below 10% [10,11]. To account for non-linearity
at higher fractions, a correction will be introduced in

the expression for nin
t : The shear induced viscosity has

the form [12]:

nout
t � kyU 0w: �7�

The single-phase value of von Karman constant for
length scale in Eq. (7) is consistent with the experimen-

tal fact [6], that k 0 � k, when nin
t � 0:

A bubble wake induced turbulent viscosity can be
estimated as a product of slip velocity Ur and mixing

length scale [7]. If bubble size is comparable to bound-
ary layer thickness, its wake mixing length is assumed
to be proportional to y. Thus, the following expression

for nin
t is proposed:

nin
t � k1ag maxUry, �8�

where ag max�max�agj30Ry�R200�; k1 is a non-linear-
ity empirical coe�cient. In general, k1 depends on the
¯ow character around the dispersed phase. To achieve
logarithmic wall law, there must be alntAy: Since void

fraction pro®le is not known a priori, it is assumed
that al � 1ÿ ag max:
Substitution of Eqs. (7) and (8) into Eqs. (5) and (6)

yields:

dUl

bU 0
w

� dy

ky
: �9�

In Eq. (9), scaling coe�cient

b �
��

1� k1amaxUr

kU 0
w

�ÿ
1ÿ ag max

��ÿ1 �10�

is introduced. Solution of Eq. (9) is:

Ux
� �

1

k
ln
ÿ
yx�
�� Bx, �11�

where wall variables yx�, U
x
� are calculated using new

velocity scale U
0x
w � bU 0w: Eqs. (1) and (11) are equival-

ent when k 0 � kbÿ1:
Measured values of b, ag max and U 0w in Ref. [4],

were used to calculate k1 from Eq. (10). Unknown slip
velocity for distorted bubbles was evaluated by [13]:

Ur �
�
4gsDr=rl

�1=4�1ÿ amax �3=4, �12�

where s is the surface tension and Dr is the density
di�erence of the phases. Eq. (12) takes into account

bubble concentration. Due to the wall void peaking,
slip velocity calculated through Eq. (12) is minimal in
the boundary in an agreement with [4]. It was found

that k1 can be approximated by the following formula:

k1 � 4:9453eÿ40:661U
0
w , �13�

where the frictional velocity is in m/s. Eq. (13) indi-
cates that the relative contribution of bubble wake

induced turbulence decreases as shear induced turbu-
lence level increases. Functional dependence k1�U 0w�
also shows that k1 depends on other ¯ow parameters,

because U 0w, in turn, depends on void fraction, liquid
velocity and turbulence level.
Logarithmic law preservation for bubbly ¯ows

suggests that dissipation rate of liquid el is equal to
turbulence production rate [12]:

el � U
02
w

@Ul

@y
: �14�

Taking into account Eq. (9), Eq. (14) becomes:

el � U
03
w b
ky

: �15�

The di�erence between Eq. (15) and single-phase ex-

Fig. 2. Mean velocity pro®le in log layer in: (a) single-phase

wall variables; (b) renormalized wall variables.

A.A. Troshko, Y.A. Hassan / Int. J. Heat Mass Transfer 44 (2001) 871±875 873



pression is that two-phase dissipation time scale is reci-
procal to b: Thus, it is determined by not only velocity

scale U 0w and length scale y, but also two-phase par-
ameters contained within b:
The standard k±e model of turbulence models turbu-

lent viscosity as nt � Cmk 2
l e
ÿ1
l , where Cm �� 0:09� is

empirical constant. Thus, the boundary condition for
turbulent energy kl is:

kl � U
02
w������
Cm

p � constant: �16�

Eq. (16) is analogous to its single-phase counterpart.

3. Validation

Eq. (11) was validated against experimental data of

[5,7] (see Table 1). An expression for additive constant
Bx was derived in [4] on the same grounds as Eq. (2).
Fig. 2a and b present logarithmic pro®les [7] using

conventional and new wall variables. As shown, the

rescaled pro®le is very close to a single-phase law. In
the experiment of Ref. [5], calculated b exceeded unity

by a value not more than 6%. This is in good agree-
ment with measured value of b � 1:
The new wall law was speci®cally developed aiming

at its eventual implementation in CFD programs. The
CFX4.2 [14], a commercially available CFD program
with multiphase capabilities, was used to implement

the new wall law. The phase coupling was modeled via
drag, lift, turbulent dispersion and wall lubrication
forces. Turbulence in liquid was described by standard

k±e model with addition of bubble induced turbulent
viscosity [7]. Upward bubbly pipe ¯ow experiment of
Wang et al. [15] was chosen for validation. Three cases
were calculated with liquid super®cial velocity Jl �
0:94 m/s (Re = 53,500) and air super®cial velocities
Jg � 0:1, 0.27, 0.4 m/s. Two calculations were per-
formed, one with developed two-phase law and the

other with conventional single-phase law. Implemen-
tation of two-phase wall law resulted in an increased
wall friction. Predicted friction velocity was used to

non-dimensionalize measured mean liquid velocity and

Table 1

Experimental data used in validation (upward, air±water ¯ow)

Authors Flow type d (mm) Jl (m/s) ag max (%) U 0w (m/s)

Marie et al. [4] Bubbly, ¯at boundary layer 3.5 0.75 2 0.037

Bubbly, ¯at boundary layer 3.5 0.75 3.5 0.039

Bubbly, ¯at boundary layer 3.5 0.75 6 0.044

Bubbly, ¯at boundary layer 3.5 1.0 1.6 0.047

Bubbly, ¯at boundary layer 3.5 1.0 3.8 0.049

Bubbly, ¯at boundary layer 3.5 1.0 6.8 0.052

Sato et al. [7] Bubbly, pipe, 26 mm I.D. 4.8 0.58 18.1 0.0463

Nakoryakov et al. [5,6] Bubbly, pipe, 86.4 mm I.D. 0.8±3 2.05 10 0.0948

Bubbly, pipe, 86.4 mm I.D. 0.8±3 2.05 9 0.12

Slug 0.8±3 2.05 2 0.115

Fig. 3. Mean velocity pro®le in log layer �Jg � 0:1 m/s). Fig. 4. Mean velocity pro®le in log layer �Jg � 0:27 m/s).
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compared with single- and two-phase wall laws as dis-
played in Figs. 3±5. As shown, experimental pro®le is

closer to the calculations when the developed two-
phase wall law was used.

4. Conclusions

Experimental proof of logarithmic law preservation

for bubbly boundary layer allows to assume that mix-
ing length approach can be applied to such layer. A
modi®cation was introduced to the logarithmic wall
law to account for additional bubble induced turbu-

lence in the log layer. The proportionality coe�cient
accounting for high void non-linearity was introduced
and correlated as function of friction velocity. A new

wall law was derived where mixing velocity scale is a
function of local two-phase parameters. The new law
was validated against experimental data of upward

bubbly pipe ¯ows and implemented in a CFD code. A
better agreement with experimental data was achieved
when the two-phase wall law is used over conventional

single-phase law.
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Fig. 5. Mean velocity pro®le in log layer �Jg � 0:4 m/s).
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